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The mechanisms involved in the spreading of one liquid on the surface of another are 
considered for the case of a positive spreading coefficient. Taking into account the 
effects of gravity, capillary pressure and the spreading coeBcient, the general equa- 
tions determining the spreading are derived. These are then solved for the situation 
where the spreading liquid is introduced onto the surface of a uniformly flowing 
substratum a t  a position upstream of a barrier on the substratum surface. In this 
manner a steady-state situation is achieved for which the variation of spreading-liquid 
thickness with position is obtained as a function of the deposited volume of spreading 
liquid and the velocity of the substratum. 

1. Introduction 
When a volume of liquid (phase 1) is deposited on the horizontal surface of another 

immiscible liquid (phase 2) which is denser than phase 1, it spreads out on the surface 
owing to gravity and surface-tension forces (Fay 1969). As the layer of phase 1 thins, 
gravity becomes a less effective driving force and whether it continues to spread 
depends on the sign of the Harkins (1952, p. 42) spreading coefficient, which is 
defined as 

s = UZ3 - U13 - U12, (1.1) 

where the void or air space is conveniently termed phase 3 and a,, is the tension of 
the i,j interface. If S < 0, phase 1 (designated as ‘oil’ for convenience) spreads on 
phase 2 (designated as ‘water’) only until it forms a liquid lens from the balance of 
capillary and gravity forces (Pujado & Scriven 1972). However, if S > 0, the oil 
spreads until the available water surface is completely covered, usually in the form 
of a monomolecular layer. It is only this latter situation (S > 0) that will be con- 
sidered in this paper. 

Although the above requirement (S > 0) for the continued spreading of the oil to 
form a thin film is well known, the relation between gravity, capillary pressure and 
the value of S as the contributing forces for spreading is not well understood. Neither 
is exactly how the oil spreads for S > 0 well understood since it is not possible for the 
interfacial tension forces to balance at  a line of three-phase contact between the 
liquids. 
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Spreading experiments described in the literature are mainly concerned with how 
the spreading distance I changes with time t ,  the spreading rate being usually expressed 

I = ktn. (1.2) 
in the form 

The values of n reported vary from experiment to experiment: Landt & Volmer 
(1926), von Guttenberg (1941) and Burgers, Greup & Korvezee (1950) reported 
n = a, and 9 respectively for the radial spreading of a fatty-acid monolayer on 
water, while Lugton & Vines (1960) gave n = 4 for cetyl alcohol on water and Marwedel 
& Jebsen-Marwedel (1961) n = 4 for lacquer spreading on another lacquer. For uni- 
directional spreading of polydimethyl siloxane monolayers, the value n = 4 was 
reported by Banks (1957) and Ahmad & Hansen (1972). However, Langmuir (1936) 
and Mercer (1939) observed that the velocity of spreading of several fatty acids 
initially increased exponentially with time but then showed a decay. The effects on 
spreading of the viscosities of the oil and water, of gravity, of the interfacial tensions 
and of the value of S also show apparent conflict between experiments. Recent 
interest in the control of oil spills (Hoult 1972; Buckmaster 1973; Wicks 1969; 
Garrett & Barger 1970) produced attempts to understand the dynamics of spreading. 
Fay (1969), Hoult & Suchon (1970) and Hoult (1972) showed from theoretical and 
experimental studies that, when gravity was the dominant driving force, n = Q and 1 
for unidirectional and radial spreading respectively while, when the effect of the 
spreading coefficient became dominant, a value of n = 2 was obtained for both cases. 
Still unknown are (i) the exact manner in which the spreading coefficient S affects 
the motion, (ii) the role played by capillary pressure and (iii) the combined effect of 
gravity, the spreading coefficient and capillary pressure. 

In  many spreading systems for which S > 0, the oil forms an advance band of small 
thickness at  the contact line distinct from the bulk liquid (Mercer 1939; Zisman 1941). 
This band consists of either a monolayer or a layer of submicron thickness (Mar & 
Mason 1968). It is well known (Sheludko 1966) that the phenomenological behaviour 
of such thin films is different from that of the bulk phase, and we suggest the possi- 
bility that, owing to a surface-density variation of the monolayer (Adamson 1967) 
(or equivalently its thickness variation), the composite interfacial tension u of the 
oil-covered interface in this advance band varies from the value u$3 for the water-air 
interface a t  the leading edge to the value C T ~ ~ + ~ ~ ~  for a thick oil layer (where there 
is no molecular interaction between the oil-water and oil-air interfaces) at the inner 
boundary between the band and the bulk of the oil. In  this manner the force difference 
S is thus distributed across the band (and thus avoids the difficulty in having a force 
S per unit length acting along a three-phase contact line, where it would produce an 
infinite velocity). The surface concentration of oil in the band is assumed to  adjust 
itself such that the net force (due to the composite surface-tension variation) on any 
surface element exactly balances the hydrodynamic drag on the lower surface of the 
element. While the band (which we shall for convenience refer to as the monolayer) 
is considered as a two-dimensional surface (being so thin that the continuum hydro- 
dynamic equations are not applicable within the oil there), we do consider the bulk 
of the oil (which we shall refer to as the bulk layer) as a three-dimensional continuum 
permitting the use of the Navier-Stokes equations there and the inclusion of the 
effects of gravity and capillary pressure. The thickness of the oil in the bulk layer a t  
the boundary with the monolayer is thus taken to be zero. The angle formed by the 
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FIGURE 1. Schematic diagram showing the steady-state situation of 

an oil (with S > 0)  spreading against a uniform flow. 

oil-water and oil-air surfaces at  this boundary must also be zero since we have assumed 
that CT = ~ 2 3 - S  = a,,+ vI3 there. 

We describe in this paper how the equations which determine spreading in both 
the monolayer and the bulk layer may be obtained. These equations are, however, 
difficult to solve in general, particularly for those spreading processes which are time 
dependent. Thus the particularly simple steady-state situation is considered in which 
oil with volume V per unit width is introduced onto the surface of water (with a free 
surface a t  xj, = 0) flowing with velocity U along a channel, the oil being held in place 
by a vertical barrier projecting below the water surface (figure I). Forward spreading 
of the oil is restrained by the substratum flow, and a steady, unidirectional spreading 
situation is established with the leading edge of the oil a t  a fixed position which may 
be taken to be XI = 0, the barrier being a t  xi = 1, where 1 is the total length of the oil 
layer. The oil is assumed to have negligible evaporation and dissolution with the 
contact angles between the barrier and both the oil-water and the oil-air interface 
being 90”. The feasibility of obtaining this steady-state spreading situation has been 
demonstrated by Sellin (1968) and McCutchen (1970; see also McDowell & McCutchen 
1971). In  terms of the oil volume V and water velocity U ,  the variation of the oil thick- 
ness with position and the lengths of the monolayer and bulk layer are obtained. This 
example represents a suitable model for an oil containment boom and the results 
obtained may be used to estimate the volume V of oil which may be contained by a 
boom employed across a river which is flowing with velocity U (or by a boom towed 
with a velocity U at sea). 

2. Monolayer spreading 
The equations governing the spreading of the oil in the monolayer region are now 

obtained. Since, in this region, the oil thickness is so small compared with the thickness 
of the boundary layer in the water immediately under the oil layer, the velocity u‘ 
may be assumed to be constant across the oil layer. Thus the conservation of mass for 
the oil requires that 

where V’ is the surface (two-dimensional) gradient operator, t‘ is the time and H’ 
aH’/at’+V’.(H’u’)  = 0, (2.1) 

18-2 
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the thickness of the oil layer, which, since it may be of molecular thickness, should 
more properly be considered as the surface concentration (i.e. the volume per unit 
area). 

The surface tension u of the monolayer-covered substratum varies from a value of 
v12 + ~ 1 3  a t  the boundary between the thick oil layer (the bulk layer) and the mono- 
layer to uZ3 a t  the leading edge of the monolayer, where there is an oil-free air-water 
interface. The resulting surface-tension gradient along the monolayer must be 
balanced by the shear stress T’ exerted by the substratum flow on the oil (see Scriven 
1960). Thus 

V’r + T = 0. (2.2) 

The value of r at any point is given by the monolayer equation of state (see 
Adamson 1967; or Sheludko 1966), which, assuming that there are no hysteresis or 
time-dependent effects, relates u to the surface concentration H’. This constitutive 
relation is, for certain spreading liquids, available from experiment or, in certain 
limiting situations, from approximate theoretical calculations (Sheludko 1966; 
Adamson 1967). Thus 

which when substituted into (2.2) yields 

u = u(H’) ,  (2.3) 

( d ~ / d H ’ )  V‘H‘  + T‘ = 0. (2.4) 

Equations (2.1) and (2.4), together with a relationship between u‘ and 7’ obtained 
from solving the boundary-layer equations in the water, may thus be solved for u’, 
7’ and H ’ .  

Should the water-air interface on which this oil layer is situated be disturbed from 
the horizontal owing either to the presence of a flow in the water or to the existence of 
the bulk layer, (2.1) and (2.4) would still be valid. However, the pressure difference 
across the monolayer from the water to the air must be equal to the local value of u 
times the surface curvature. Thus, taking a rectangular Cartesian set of axes (xi, xk, x;) 
with the xi axis vertically downwards, the elevation of the monolayer-covered water- 
air surface x; = hL3 must satisfy 

where P‘ l aa t  is the dimensional pressure P’ in the water (phase 2) and where R, and 
R, are the principal radii of curvature of the surface. For convenience the pressure in 
the air has been taken to be zero. If the slope of the surface is small then (2.5) may be 
approximated by 

where V2is the two-dimensional surface Laplacian alaxi2 + alaxL2. In the regions where 
the water-air surface is occupied by the monolayer, u is a function of xi and xi (and is 
determined by (2.1), (2.4) and the solution within the boundary layer), while, in the 
monolayer-free regions, IT takes the constant value uZ3. 

For the particular situation where the undisturbed flow velocity 0‘ of the water 
(in the absence of the monolayer) is irrotational and steady, the pressure P‘ lwst in 
(2.6) must satisfy Bernoulli’s equation 

P‘ lwat = a( l/R1+ I/&), (2.5) 

P’ lwat = UV”h;3, (2.6) 

A 

P’ Iwat + i p 2  U’,  -pzghh, = constant ( 2 G )  (2.7) 
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since there can be no pressure variation (to the lowest order) across the boundary 
layer in the yater beneath the monolayer. The quantity 0‘ appearing in (2.7) is the 
magnitude 1 U‘I of the velocity evaluated immediately below ihe boundary layer. 
Choosing the origin of the co-ordinate system such that with U‘ = 0 the water-air 
interface is the horizontal surface xi = hi3 = 0, it is seen that the constant G appearing 
in (2.7) is zero. Thus from (2.6) and (2.7) 

vV” h& + &pz 0‘’ - pzghL3 = 0. (2.8) 

3. Gravity-viscous spreading : expansion procedure 
By means of a type of lubrication theory, the equations governing the spreading 

of a thick layer of oil (the bulk layer) are now obtained €or the situation where the 
effects of gravity and surface tension are both important. It is assumed that the oil- 
layer thickness is such that (i) the oil may be regarded as a continuum and (ii) the 
oil-water and oil-air interfaces have well-defined constant interfacial tensions of 
values u12 and u13 respectively [ie. the disjoining pressure (see Sheludko 1966) is 
negligible]. 

Letting the oil-air and oil-water interfaces be xi = hi3 and xi = hiz respectively, 
the thickness H‘ of the oil layer is 

where hi2, hi3 and H‘ are functions of xi, xi and t ‘ .  The basic assumption is made (as 
in lubrication theory) that the oil-layer thickness is small with respect to the hori- 
zontal dimensions of the oil. Thus, denoting by h the characteristic value of the oil 
thickness H’ and by B the typical horizontal dimension of the bulk layer of oil, we 
define 

as the small parameter in terms of which expansions of the fluid velocities will be 
made. 

We denote by P’ the hydrodynamic pressure in either the oil or the water and by 
p’  the excess pressure above hydrostatic, i.e. : 

H = hi,- his, (3.1) 

E = h/B (3.2) 

for the oil and 

for the water. 

$I‘ = P’-p,gx;  

p ‘  = P’-p2gx i  

For the purposes of this analysis we neglect the viscosity and density of the air in 
comparison with those of the oil and water. It will also be assumed for generality that 
there is a fl2w in the water (which would exist even without the oil layer) with a 
velocity of U‘ and with a pressure excess above hydrostatic of $’. 

In the oil (phase 1),  the fluid velocity u’ satisfies the Navier-Stokes and continuity 
equations, which may be written in tensor? form as 

au;lax; = 0. (3.6) 
t The summation convention is used throughout, the Latin indices taking the values 1 and 2 

and Greek indices the values 1, 2 and 3. 



534 N .  D.  DiPietro, C .  Huh and R.  G .  Cox 

To compare the magnitudes of the various terms in the Navier-Stokes equations 
(3.5) it is convenient to define dimensionless quantities xl ,  x2,  5, P ,  h12, hl,, ul, u2, 
u, and t in terms of p1 (the oil viscosity), U (a characteristic velocity of the oil) and 
either h or B as 

X ,  = h-lx;, P = (h2/p,BU)P', U, = (sU)-'~A;,  (i = 2,3).  (3.7) 1 
xi = B-~x; ,  p = (h2/p1BU)p', ui = U-lu;, 

t = UB-lt', hli = h-lh;i 

The co-ordinates (x l ,  x2 ,  2,) so defined are stretched in the vertical direction to make 
the variations of 5, of order unity across the layer. 

If we also define a Reynolds number for the flow as 

Re = Pl  BU/p, ,  (3.8) 

then the horizontal components of (3.5) may be written in non-dimensional form using 
(3.7) as 

while from the vertical component of (3.5) 

(3.10) 

and from the continuity equation (3.6) 

au,lax, = o. (3.11) 

We suppose that the velocity and pressure fields can be expanded in power series 

u = U,+EU1+0(€) ,  (3.12) 

P = Po + €PI + O ( 4 .  (3.13) 

in the small parameter e as 

Substituting these expansions into (3.9), (3.10) and (3.11) and assuming that 

s2Re < 1 (3.14) 

so that the effects of fluid inertia are negligible, we have to lowest order in E that 

apo,,lax, = a2(uo),lax;, apo/ax, = 0, (3.15), (3.16) 

w,),/a% = 0, (3.17) 

where ( u ~ ) ~  represents the kth component of the lowest-order (or zeroth-order) 
approximation uo for the fluid velocity. Equations for higher-order terms may be 
obtained in a similar manner. 

4. Gravity-viscous spreading : boundary conditions 

following boundary conditions must be met: 
The oil-air and oil-water interfaces are fluid-fluid interfaces across which the 

(i) the continuity of tangential stress, 
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(ii) that the difference in the normal components of the stresses be balanced by 

(iii) the continuity of the tangential velocity components, 
(iv) the kinematic free-surface condition. 

interfacial-tension forces, 

4.1. Tangential-stress boundary conditions 
Expressing the unit normals n13 and n12 to the oil-air and oil-water interfaces 
(directed away from the oil) in dimensionless form and expanding in powers of E, 

we obtain 

n13 = (2: 8- + o(E~) ,  6 ah13 - 8x2 + 0 ( € 3 ) ,  - i + 8.2 [(2)'+@j2] +0(c4)) (4.1) 

and 

Since the motion induced in the air by the spreading of the oil is of little interest 
and since the viscosity of the air is assumed negligible, we shall take the tangential 
stress a t  the oil-air interface to be zero and omit the continuity of tangential velocity 
there. 

If the stress tensor in the oil is denoted by pia so that 

= - P' sap + /11(uL, 1 + u>, a), (4.3) 

where P' is the hydrodynamic pressure [see (3.3)], is the Kronecker delta and the 
comma in the subscripts denotes differentiation, then the condition that the tangential 
stress be zero at the oil-air interface may be written as 

pian, - (ngpiyny)ni = 0 at xi = h13, (4.4) 

where n, is the a th  component of the unit normal n13. 
Similarly, a t  the oil-water interface the continuity of tangential stress gives 

[Piana- (np ~iyny)niI  $it = 0 at xj = hi2, (4.5) 

where n, is here the a th  component of the unit normal n12 at the oil-water interface. 
Expressing (4.4) and (4.6) in dimensionless variables and using the expansions 

(3.12) and (3.13) for u andp and (4.1) and (4.2) for the unit normals, we obtain to the 
lowest order in E 

and 
a(uo)ipx3 = o a t  x3 = h13 (4.6) 

~Ja(uo)i/ax&at = pl[a(u&/ax&ii a t  ~3 = h12. (4.7) 

4.2. Normal-stress boundary conditions 
The normal-stress difference across the fluid interfaces must be equal to the inter- 
facial tension times the sum 1/R; + l/R; of the principal curvatures of the interface. 
Thus 

and 
n,pLpnp lgk = - gl3( 1/22; + 1/22;) at xi = hi3 

n,pipnpl$it = - g12(1/22;+ 1/22;) at xj = hiz, 
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where the principal radii of curvatures are taken positive if the corresponding centres 
of curvature lie on the oil side of the interface. 

Again, expressing these relations in dimensionless form and expanding in powers 
of E ,  we obtain a t  lowest order 

and 

In obtaining (4.8), the ambient atmospheric pressure was taken as zero. 

4.3. TangentiaE-velocity boundary Condition 
When expressed in dimensionless form and expanded in powers of E ,  the continuity 
of the tangential velocity a t  the oil-water interface, i.e. 

[u; - ( u ~ n , ) n i ] ~ ~ t  = 0, 

( u ~ ) ~  = 0 a t  x3 = h12. 
becomes at lowest order 

(4.10) 

4.4. Kinematic free-surface conditions 
The kinematic free-surface boundary conditions are 

and 
d(xA - hi3)/&‘ = 0 a t  xi = hi3 

d(x5 - hi,)/&’ = 0 a t  x5 = hi,, 

where xi represents the xi co-ordinate of a fluid particle on the fluid-fluid interface 
and dldt‘ is the material-derivative operator, which measures the time rate of change 
following the fluid particle. To the lowest order in E these give 

( u ~ ) ~  = ah13/at+ (~o)iah13/axi at x3 = hi3 (4.11) 

( ~ 0 ) 3  = ahl,/at + ( ~ ~ ) ~ a h ~ , / a ~ ~  at x3 = hI2. (4.12) 
and 

5. Equations governing gravity-viscous spreading 
The lowest-order equations (3.15)-( 3.17) for the velocity and pressure fields in the 

oil are now solved with the lowest-order boundary conditions (4.6)-(4.12). Thus from 
(3.16) 

Po = PO(”1, x,), (5.1) 

so that by integrating (3.15) twice with respect to x3 and by making use of the boundary 
condition (4.6), it is seen that the horizontal components of the velocity me 

(udi = S(a~,/ax~)(~3--12)(~3+hl,-2h,3)+ V, /watt (5.2) 

where 
made dimensionless by the characteristic velocity U .  

Iwat is the horizontal component of the velocity at  the oil-water interface 
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Since p o  is constant across the oil layer [see (5. l)], the value of p o  within the oil a t  
x ,  = h,, given by (4.8) must be the same as the value of p o  within the oil a t  x, = h,, 
given by (4.9). Thus 

V2(g12h12 + gi3hi3) -gB2{(pz-pi)hiz  + ~ i h i J  = ( P ~ B ~ U / ~ ~ ) P ~  Iwat, (5.3) 

where pOlwat is the pressure excess over hydrostatic in the water a t  the oil-water 
interface. Since, to lowest order, there is no pressure difference across the boundary 
layer in the water below the oil, p o  lwat may be interpreted as the pressure excess over 
hydrostatic immediately below the boundary layer. 

Substituting the horizontal velocity components given by (5.2) into the continuity 
equation (3.17), we obtain 

which when integrated across the oil layer using the kinematic free-surface conditions 
(4.11) and (4.12) yields 

aH/at+V.(HUI,,t)-+V.(H3Vp0) = 0, (5.5) 

where H = H'/h is the dimensionless oil-layer thickness and where the operators V 
and V . signify the two-dimensional surface gradient and divergence respectively. 
The substitution of the value of po(xl, x2)  obtained from (4.8) into (5.5) yields 

while, in a similar manner, the value of po(x , ,x , )  obtained from (4.9) yields the 
alternative equation 

Since, to lowest order in E ,  the dimensional tengential stress 7' exerted by the water 
on the oil at the oil-water interface is given by 

7; = pu,[a(u&/ax;lWat 

evaluated at xi = hi2, the dimensionless stress 7 = h d / p 2  U is 

7 k  = [a(uO)k/ax3]W8t* 

Now by integrating (3.15) across the oil layer once and making use of (4.6), we 
obtain 

which by the tangential-stress boundary condition (4.7) gives 
HaPo/aXk = [ a ( ~ o ) k / a X & i l  a t  x3 = (5.9) 

Hence 

(5.10) 

= = (Pl/P2)HVPO, (5.11) 

which upon substitution of the value of p o  given by (4.8) yields 

(5.12a) 
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In  a similar manner, by making use of the value ofpo given by (4.9), T may alternatively 
be expressed as 

Equations (5.3),  ( 5 . 6 ~ )  [or (5.6b)l and ( 5 . 1 2 ~ )  [or (5.12b)l together with the relation 

H h12 - h13 (5.13) 

represent five scalar relations between the seven scalar quantities H, h12, h13, V ,  and 
7i (i = 1,2).  The two further relationships necessary in order to solve for these quan- 
tities are obtained by solving for the flow in the boundary layer in the water under the 
boundary conditions that 

ui lwat = lwat (i = 1,2) (5.14) 

on the oil-water interface x3 = h,, and 

ui lwat+ Iti as x~-+co, (5.15) 

where U = U‘/V is the dimensionless undisturbed flow velocity in the water. The 
value of 7 is then given by 

T~ = [aui/aq,lwat (5.16) 

evaluated at the oil-water interface x3 = h12. From the definitions (3.7) of the dimen- 
sionless quantities, it is seen that in dimensional form (5.3) may be written as 

V’2(g12h12 + ci3h;3) - gC(~2-pi)hlz + ~ l h ; J  = P; (wat ( 5 . 1 7 ~ )  

A h  

while, similarly, the dimensional forms of ( 5 . 6 ~ )  and ( 5 . 1 2 ~ )  are 

aH’ 
---5-+V’.(H’U’)-&V’. V’2h;3] = 0 ( 5 . 1 8 ~ )  
at 

( 5 . 1 9 ~ )  

where U’ is the velocity a t  the oil-water interface. Alternative forms of ( 5 . 1 8 ~ )  and 
( 5 . 1 9 ~ )  obtained from (5.6b) and (5.12b) are respectively 

and 
T = (wat]. (5.19b) 

Since the pressure excess p;lwat over hydrostatic appearing in (5.17u), (5.18b) and 
(5.19b) may be evaluated below the boundary layer in the water, where the flow is 
inviscid, it is seen that pi lwat satisfies 

A A 

Vp; I W a t  = - p2( U’ . V’U‘ + aU’/at’), 

so that (5.18b) and (5.19b) may be rewritten as 

(5.20) 
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and 
T’ = H ‘ [ ( p , - p , ) g V ’ h ~ ,  - c1BViV’2h;2 - p 2 ( a i .  V ’ 8 ’  + a6’ /a t f ) ] .  ( 5 . 1 9 ~ )  

For the particular case of steady irrotational flow in the water, the pressure ph Jwat 

appearing in (5.17a), (5.18b) and (5.19b) is, by Bernoulli’s equation, 

17; I wat = - 4 ~ 2  012, (5.21) 
so that for this case 

V’2(u1,h;2+a13h~3)-g[(p2-p1)h~2+p1h~31+~p20’2 = (5.17b) 

- a w  + V ‘ .  (H‘U‘)  - 90‘. { H‘3 [ ( p , ~ ~ ‘ ) g V ‘ h ; 2 - ~ V ’ V ’ 2 h ~ 2 - ~ ~ ‘ V f ~ i ] )  P1 = 0, (5.18d) 
ati Pl  

T’ = H’[(p2-pl)gV’h;2-u12V’V’2h;2-p2 O’V’O’].  (5.19d) 

At the ‘contact line’ separating the bulk layer (where the motion is determined by 
(3.1), (5.17a), (5.18a), ( 5 . 1 9 ~ )  and the solution of the boundary-layer equations in 
the water) from the monolayer (where the motion is determined by (2.1), (2.4), (2.8) and 
the solution of the boundary-layer equations in the water) the surfaces must be con- 
tinuous, so that 

hi2 = hi3 = hL3. (5.22) 

Furthermore, for the surface-tension forces to balance there, the slopes of the surfaces 
in the direction normal to the contact line must be equal, so that 

A.V’h;,  = A.V’h;,  = A . V ‘ h ~ , ,  (5.23) 

where A is a unit vector normal to the contact line lying in the horizontal plane. From 
(5.22) and (5.23) it is seen that the oil thickness H’ in the bulk layer satisfies 

H‘ = 0, A.V’H’  = 0 (5.24) 
at the contact line. 

6. Steady unidirectional spreading 
As an example of the use of the theory described in $ 5  2-5, we consider water flowing 

with a constant velocity U in the xi direction while a constant volume V per unit width 
of oil is held in a steady configuration against the flow by means of a barrier placed 
perpendicular to the flow and projecting below the water surface a sufficient distance 
to prevent the oil from seeping under the barrier (see figure 1). Taking the origin of 
the axes at the leading edge of the monolayer and letting x; = d a t  the contact line 
separating the monolayer from the bulk layer, it is seen that for the monolayer 
(0 < x; < d )  the equations reduce to 

CT a2h&/h;2 - p2gh63 = 0 (6.3) 

if the plane xi = 0 is taken to be the undisturbed surface of the water flowing with 
velocity U .  From (6.1), it is observed that H’u;, the flux of oil in the monolayer, is a 
constant. ‘However, since this flux is zero at  the leading edge (with H’ = 0 there) it 
follows thtLt it is zero everywhere. Thus 

u; = 0 for 0 < x; d d (6.4 1 
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at the oil. Hence the boundary layer in the water below the monolayer must be a 
Blasius boundary layer (see Schlichting 1968, p. 128), so that the stress 7; is 

7; = a(p,p2 273)) (x;)-*, where a = 0.33206. (6.5) 

(6.6) 

Since u = u23 a t  the leading edge x; = 0,  it follows from (6.2) that 

u = cr23 - 2a(p2 p2 u3x;p. 

d = S2/4a2 U3p2 p2, 

At the contact line x; = d, u must equal u12 + u13, so that 

(6.7) 

where X = ~ 2 3  - (u12 + u13) is the spreading coefficient. 

the motion reduce to 
For the bulk layer from x; = d to the barrier (at x; = 1 say), the equations describing 

a2(a12 h;2 + cr13 h;3)/ax;2 - g[(P2 -Pl) h;Z +P1 h;31 = O ,  (6.8) 

where 
H’ = hi2 - h’ 13- 

(6.10) 

(6.11) 

Noting that H‘ is essentially zero a t  xi  = d, it is observed that integrating (6.9) gives 

(6.12) 

(6.13) 

is the pressure excess over hydrostatic within the oil layer. Equation (6.10) may 
therefore be written as 

7; = H‘ a f /ax;. (6.14) 

Differentiating (6.13) and making use of (6.11) to eliminate hi2 and hi3, we obtain 

a2f a 4  H’ 
(a12fu13) aT-P2g.f = -r12a13 ax;4 

a2 H’ 
+ [ PlQ(T12 + (P2 -PA gal31 ax;2 - Pl(P2 -P1)S2H’. (6.15) 

From (6.12) and (6.14) 

However, since the magnitude of 7; is 

U ;  = (3pl)-lH’7;. (6.16) 

where S is the local boundary-layer thickness, it follows that 

(6.18) 
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In  order to simplify the numerical computation of the solution of (6.8)-( 6.11) 
[with the boundary-layer equations in the water] the following assumptions are made: 

and 

(6.19) 

(6.20) 

From (6.18), it is seen that assumption (i) implies that 

u; 4 u, (6.21) 

so that the velocity U ;  a t  the oil-water interface is very small, the boundary layer in 
the water being therefore approximately that of Blasius. Hence the stress 7; is given 
by (6.5). While assumption (i) is obviously satisfied for the bulk layer close to the 
contact line [where H N 0 with 6 of order (vd/U)d],  its validity for the entire region 
d < xi < 1 must be checked once the solution has been obtained. 

Writing (6.8) in the form 

we see that assumption (ii) implies that 

al,a2h;,/ax;2 - gpl h;, N- 0 for X ;  d .  

Since hi2 = hk3 and ahi2/ax; = ahi,/ax; a t  xi = d with hk3 satisfying (6.3) for x; < d ,  it 
follows that h;3 and hi3 must be very small, so that 

€3’ N- hi2, (6.22) 

the oil-air interface of the bulk layer being almost flat. Thus from (6.13), 

f = (p2 - pl) g w  - rl2 a2Hi/ax;2, 

which when substituted into (6.14) with the value of 7; given by (6.5) yields 

(p2 -p,)gH’aH’/axi- I T , , H ’ ~ ~ H ’ / ~ x ; ~  = a(p2p2 U3)4x;-4. (6.23) 

Defining new dimensionless variables as 

= (H‘/D)(2S/u12)4) 6, = x;/D, a = d/D, 2 = l/D, & = E,-d, - \  (6.24a) 

D = (%2/(P2-/31)g)4 (6.24 b)  

V = (V/D2) (2S/u12)4, h = a(p2 p2 U3D)*/2S, J 
where 

is the capillary length scale for the water-oil interface, (6.23) may be written as 

B(aB/as, - a3B/ag) = ~ 2 ~ 4 .  

The dimensionless quantity h may by (6.7) be written as 

(6.25) 

h = a(D/d)) = aa-4 (6.26) 

and is thus related to the ratio of the capillary length scale D to the length of the 
monolayer d. In  terms of the dimensionless distance g1 measured from the contact 
line, 

dI? d3B ah2 
(Z -B)  = (1 + 16h2ij1)* 

(6.27) 
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Also 
8 = d 8 / d g l =  O on ijl = 0. 

d 8 / d i j 1 = O  on g , = b - 2  

(6.28 a) 

(6.283) 

if it is assumed that the contact angles of the oil-air and water41 interfaces with the 
barrier at x = 1 are 90'. The dimensionless volume per unit width of the oil (neglecting 
that of the monolayer) is 

(6.29) 

It is to be noted that in the absence of any flow in the water, so that A = 0, (6.27) 
and (6.28) have 8 = 0 as a solution. This indicates that under these circumstances the 
oil will continue to spread indefinitely. 

To integrate (6.27) numerically with the boundary conditions (6.28), we employ the 
Runge-Kutta method. As stepwise integration is not possible at ijl = 0 (where 
8 = 0), we use the asymptotic expansion of 8 for 5, -+ 0, which may be obtained (see 
appendix) as 

8 N (3$).)t Aijf + C&5+4W. (6.30) 

This provides values of 8, a8/aijl and a28/aij: a t  g1 = ;6 (8 < f - 2) for the start of the 
integration in 8 < a, < I-2. Thus for different values of c, (6.27) may be integrated 
until the point where a8/a i j ,  = 0 is attained. From the value of i so obtained, at 
the barrier g1 = b-2 (which we shall denote by 8*) and 7 [calculated from (6.29)] 
are calculated. By varying the value of c, we can thus obtain 8* and b as functions of 
V and A. 

7. Numerical results and discussion 
The dimensionless profile of the oil film (i.e. 8 as a function of i- 5J as calculated 

in the manner described in $ 6  is shown in figure 2 for A = 1 for various values of the 
dimensionless oil volume 7. It is seen that, although d8 /dZ1  is zero at  5, = 2, the oil 
film does increase in thickness rapidly in the bulk layer close to the contact line. 
Figures 3(a), ( b )  and (c) show for r = 5, 1 and 0.1 respectively the oil-film profile in 
the bulk layer for different values of A. For a fixed 7, the profiles obtained for de- 
creasing values of h may be considered [see (6.24)] as those for a fixed volume of oil 
for which the water velocity U is decreased. It is noted the bluntness of the profile near 
the contact line decreases as the value of h is decreased. In figures 2 and 3 the values 
of the dimensionless monolayer length 2 = 1/16h2 have been indicated. From figure 3 
it  is seen that the length b-2 of the bulk layer increases and the depth 8* of the oil 
a t  the barrier decreases as the value of A is decreased. The length of the bulk layer 
(and also that of the monolayer) increases without limit as h -+ 0. Figure 4 summarizes 
the results by showing the calculated values of b and 8* as functions of F and A. It 
may be noted from figure 3 that when the oil volume is large the oil thickness profile 
near the contact line approaches a limit for each value of A. The value of this limiting 
profile (i.e. the value of 8 for r+m) is shown in figure 5. It may be noted that figure 
4 (b)  (showing the values of a* as a function of h and 7) may be used to estimate the 
volume V per unit width that may be held by a containment boom of depth H *  
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FIUTJRE 2. as a function of l-Z1 for A = 1 with different values 
of 7. The value of 71 is 0,0625; S > 0. 

placed across a river flowing with velocity U ,  the dimensional quantities V ,  H*  and 
U being given by 

V = v (  2SUI2 ) ,  t H * = B * (  2s )', U = ( 2 )  4 * ( h4S4(p2-p) 4 
(Pz - pJ2g2 (Pz - P1) 9 a 1 2  P2 Pa 

Further discussion concerning the form of figure 4 (b) for larger values of B * and 7 
will be given in a subsequent paper. 

As a specific example, the properties of a spreading fluid with positive spreading 
coefficient, namely the Dow-Corning Silicone fluid used by Huh, Inoue & Mason 
(1975), have been listed in table 1 together with the dimensional values of V ,  U ,  H' 
and xi which correspond respectively to specific values of r, A, 8 and 2,. 

The conditions for the validity of the various assumptions made in the theory are 
now examined. Firet, for the lubrication theory to apply 

B = h / B < l ,  (7.1) 

where locally one may take the characteristic value of h/B to be d H / d x i ,  ao that the 
condition 

dH'/dxi Q 1 (7.2) 

must be satisfied everywhere. From (6.24), this implies 

where (dR/d?Qmx, the maximum value of da/dZ,, tends to zero (see figures 2 and 3) 
as h-t 0. Thus the condition (7.1) is satisfied if either 

or 
S < a12 with h oforderunity 

h < 1 with S/a12 of order unity. 

( 7 . 4 4  

(7.4b) 
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FIGURE 3. a as a function of 2 - 3, for different values of A with (a) 7 = 5,  (b)  P = 1 and 
(c) = 0.1. The values of a are shown in parentheses; X > 0. 
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0 

0 I 
x, -a 

2 

FIGURE 5. as a function of Zl - 51 for different values of h 
in the limit 7 -+ co; S > 0. 

P V (emz) h U (em s-1) I3 H (cm) 

6 2.37 5 243 0.5 0.303 
1 0.474 2 132 1 0.607 
0.1 0.047 1 83.1 2 1.21 

0.5 52.3 

0.1 17.9 1 0.781 
0.05 11.3 5 3.91 
0.02 6.12 10 7.81 

p1 = 0 . 9 3 4 g ~ m - ~  pz = l . O g ~ m - ~  p1 = 1OcP pB = 1.OcP 
alz = 39.5 dyne em-1 

- 
0.2 28.4 El 4 (om) 

a13 = 20.1 dyne om-1 

TABLE 1. Values of parameters for Dow-Corning 100 Silicone fluid (10 cS) 
spreading on water. 

S = 11.9 dyne em-l 

Second, the condition (3.14) for the neglect of inertia effects within the oil may, by 
writing B as H’(dH’/dx;)-l, be expressed in terms of local quantities as rs) U” 4 1, 

V1 
(7.5) 

where v1 = pl /p l  and U’ is the local characteristic velocity of the oil, which, for the 
situation where (6.19) is satisfied, is very much smaller than U ,  so that by (6.18) 
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Thus since the boundary-layer thickness 6 is of order (v2x;/U)4, where vE = p2/p2, the 
condition (7 .5 )  may be written as 

which, by (6.24),  reduces to 

(-) v1 4 k  (-) S +I (-) DU 9 ( H  - 2 -  ( x , ) - * g )  < 1. 
Va Pi (712 Vi 1 max 

Again (gz (31 ) -4dg /dEl )mx  tends to zero (see figures 2 and 3)  as h+O, so that ( 7 . 5 )  
is satisfied if either 

v l * &  S DU It 
-4 1 with (6) Pl (G) (T) of order unity. 

( 7 . 9 ~ )  

(7 .9b)  

It is noted that ( 7 . 9 ~ )  is satisfied if either (i) the oil viscosity ,ul is sufficiently large or 
(ii) the flow velocity U of the water is sufficiently small. 

Third, condition (6 .19 ) ,  which implies that the velocity U' a t  the oil-water interface 
is much smaller than U ,  may be written as 

or, in terms of the variables defined by (6 .24) ,  as 

(7.10) 

(7 .11)  

Thus (6.19) is satisfied if either 

'g 1 with h oforderunity ( 7 . 1 2 ~ )  

OT 

h 4 1 with (<) v 4p2  - (7) S 4 (T) DU * of order unity. (7.12 b )  
P1 12 

Like ( 7 . 9 ~ ) )  condition ( 7 . 1 2 ~ )  is satisfied if either (i) p1 is sufficiently large or (ii) U is 
sufficiently small. 

Finally, it is noted that conditions (6 .20) ,  which, like (6.19),  were included only to 
simplify the numerical computation, represent conditions on the properties of the 
spreading fluid. While the condition p2/pl- 1 < 1 is fairly well satisfied for many 
spreading fluids (like that in table l ) ,  the other condition crlz/c13 4 1 in (6 .20)  is more 
difficult to satisfy. 

If it is assumed that a volume of oil undergoing unidirectional unsteady spreading 
on water at  rest in a channel behaves as if it were in a steady state at each instant of 
its movement, we may use the steady-state solution to calculate its spreading rate by 
integrating the equation 

d l  1 a1 U = -  
at (7.13) 
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where U(1) is derived from the calculated relation between 1 and U (or A). This was 
done by Huh et al. (1975), who showed that the predicted spreading rate calculated 
by this method gave reasonable agreement with experiment. 

In  the theory described in 9 6 no attempt has been made to determine the stability 
of the steady-state systems considered. However, stable steady-state situations are 
known to exist, as for example in the control of oil spilled on flowing water by a 
mechanical barrier (boom). Aspects of this problem that need further study include 
(a) what happens when the conditions of validity discussed briefly above are not 
satisfied, ( b )  the effect of surface waves generated by the oil spreading (McCutchen 
1970), and (c) the possibility of turbulent motion in the boundary layer. 

Our study has demonstrated how the spreading of oil on a water surface may be 
investigated when monolayer and bulk-layer regions exist simultaneously. However, 
it should be pointed out that the model of spreading described here is not universally 
valid and that other possibilities can exist. For example, if the spreading fluid is 
slightly soluble in the water, mutual saturation may cause the value of the spreading 
coefficient S to change from positive to negative (Adamson 1967). If this occurs the 
oil film retracts to form a liquid lens. 

This work was supported by the National Research Council under Grant A7007 

Appendix. Asymptotic solution of (6.27) at ?jl = 0 
If we write y1 = 6Q1, where 8, is of order unity and 6 < 1, (6.27) becomes 

- d 3 B  - d B  
-H-+SzH- = 4A2S3-32h91S4+ ..., 

dB? d91 
so that if 

B = smo+sp81+ ... , 
where $ < p < Q, we obtain by substituting into (A 1) and equating like powers of 6 

and 
- 

-ao d3Bo/d@ = 4h2 

go d3Bl/d@ - 8 , d 3 B 0 / d @  = 0. 

Also, the boundary conditions (6.28a) imply that go, G,, dBo/dg,  and dB,/d& are 
all zero a t  9, = 0. The solution of (A3) for B0 satisfying the boundary conditions is 

8* = (?)&A@!, (A 5) 

which when substituted into (A 4) yields 

g,3d3Bl/d@- $al = 0.  (A 6)  

This has a solution satisfying the required boundary conditions which may be written 
as 

where c is an arbitrary constant. Substituting the values of R0 and 8, into (A 2) and 
noting that the resulting expression must be a function of ?jl only, it is seen that 

nl = cfjf(5+%'13), (A 7) 

p = $(5+2/13) and - 
H = (3,2-)iAjf + C i j f ( 5 + 4 1 3 )  + . . . . (A 8) 
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